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In this paper we present a numerical scheme for the calculation of the equation governing the advection of
scalars such as temperature T and cure a during the injection mold filling of thermoset polymers. A
finite-element line method is presented, with variations intended to cover a variety of processing conditions.
Sample calculations are presented for the Garcia'® problem and the encapsulation of a Motorola computer
chip. We also share our experience with some of the peculiar numerical difficulties associated with the
simulation of injection molding for realistic systems. Some of these are related to mesh “quality,” time
step size selection, and (numerical) degeneracy that could result from some otherwise “physical” material
models. The foregoing are issues that have not received a great deal of attention in the literature.
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1. Introduction

The process of injection molding of polymers seems to
have benefited greatly from emerging computer technol-
ogy. For example, with commercially available computer
codes such as PLASTEC,' the filling simulation could
predict short shots, weld lines, air trapping, overheating,
the number of gates and their locations for optimum
design, balancing of runners, optimization of injection
pressure and clamp force requirements, calculation of
pressures, temperatures, shear rate, shear stress, velocity
distribution, etc. Further, postfilling processes (packing,
in the case of thermoplastics) can also be simulated to
provide part shrinkage and the initial state of stress
(needed for subsequent structural analysis of the part).
The simulations involve the solution of the momentum
equations and the transport equations for one or more
scalars (depending on whether the polymer is a
thermoplastic or a thermoset). For thermoplastics,
simulation complications include: (a) the need for an
accurate non-Newtonian characterization of the polymer
melt as it goes through the molding process—viscosity
as a function of shear rate, temperature, and sometimes
pressure, (b) complicated geometry—thin parts arbitarily
oriented in three-dimensional space which, sometimes,
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are combined with full three-dimensional parts, (c)
moving fluid front, (d) fountain flow phenomenon at the
front and, finally, (¢) fiber orientation, as in Reifschneider,
et al! Some examples of numerical simulation of
injection molding include Broyer et al.,> Hieber and
Shen,> Kamal et al.,* Wang et al.,> Ladeinde et al.,® and
Subbiah et al.”

Most of the computer simulation capabilities men-
tioned in the first paragraph have been applied to
thermoplastics and, to a lesser extent, to thermosetting
polymers. However, we know that thermosetting
polymers are the natural choice in applications where
heat resistance is needed, an example being the use of
epoxy molding compound (EMC) for the encapsulation
of computer chips (to protect the delicate metallic layout
from the heat that is generated). Thermosets present
additional difficulties for simulation, including (a) the
need to model the degree of cure (to be defined later in
this paper), (b) a viscosity model that must now
incorporate the effect of the degree of cure, and (c) the
more significant effect of fountain flow on cure
development, this being a consequence of the absence of
dissipative effects, particularly at the top/bottom walls
of the mold. There have been previous studies on
computer simulation of thermoset polymers, these being
exemplified by the works of Gonzalez et al,® Shen,®
Gzigcia,“’ Garcia et al,,'! Turng et al,'2 and Nguyen et
al.

This paper focuses on thermosets, the filling of which
involves the flow of a reactive mixture into molds. The
viscosity of the reactants is initially low, to promote
mixing and permit the filling of larger parts; but the
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viscosity increases and the mixture ultimately gels and
solidifies as a result of chemical cross-linkage or phase
separation. For this kind of process, an optimum filling
rate must be used, which should be slow enough to allow
uniform (laminar) filling, but sufficiently high to prevent
premature gelling. (In fact, EMC is the preferred material
for microelectronic encapsulation because of its low
initial viscosity, which allows it to flow over delicate lead
frame and wire bonds without causing a large
deformation, and its ability to undergo an additional
(polymerization) reaction (during filling and postfilling),
to acquire the mechanical and thermal properties that
protect the electronic part from the environment.) We
have observed in our work that the filling rate has a
serious consequence for numerical procedures, one that
is complicated by the moving boundary.

Most injection molding processes involve low

Reynolds number and thin-walled parts in which the.

lateral dimensions (x, y) are much larger than the local
thickness (z). Thus, the pressure is assumed constant
along z and the Hele-Shaw approach is invoked, leading
to the replacement of the momentum equations by a
Poisson equation for pressure (Richardson'* and Hieber
and Shen®). The equation, which is locally two-
dimensional (in the plane of the part), is then solved,
usually with the finite-element or finite-difference
method. To advance the melt front, most people use the
control volume approach in Wang et al.’

The pressure (melt front advancement) part of
injection molding simulation is cheap compared with the
calculation of the transport of temperature T or the cure
a. Some reasons for this include the presence of
nonlinear, nonsymmetric convective operators in the
scalar transport equations, the high Péclet number, the
need for an accurate time integration, and the
requirement for a full three-dimensional calculation in
thin-walled geometries that are arbitrarily oriented in a
three-dimensional space. Moreover, as discussed in
Ladeinde et al,® direct methods or fully explicit
formulations are not desirable.

We are aware of two main approaches for calculating
temperature (and that are also applicable to the equation
for cure). The first is ad hoc and involves the assumption
of a profile across the thickness, without solving the
conservative equations. Such simplicity was necessary
decades ago when computing was very primitive. For
obvious reasons, this procedure is prone to errors, and
we feel it should be discontinued. The second approach
used to calculate temperature combines a finite difference
in the thickness direction with a finite-element procedure
that is used to solve the pressure equation. Thus, this is
a hybrid approach. In an implementation of this
approach,®5 terms of the temperature equation (such as
8*T/0z? or u-VT) are defined as element quantities, and
element contribution to a node is assumed to depend on
the volume of the element. The procedure is tedious and
does not appear flexible in terms of providing variations
that could be explored to optimize the calculations for
a variety of processing conditions.

A contribution of this work is the presentation of a
procedure that uses the finite-element method in all three
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.coordinate directions and in a manner that obviates the

foregoing difficulties. For example, we present variations
of the scheme that allow the use of small or large time
step sizes, as demanded by the filling rate. The usefulness
of this capability will become more apparent when we
discuss the crucial issue of time step size selection.
Because we use the finite-element method in all three
coordinate directions, we inherit the simplicity of
applying complicated boundary conditions and arbitrary
mesh grading in all coordinate directions. We will share
our experience with some of the general difficulties
associated with the simulation of injection molding for
realistic systems. Some of these are related to mesh
“quality,” time step size selection, and the (numerical)
degeneracy that could result from some otherwise
“physical” material models. These issues have not
received much attention in the literature, leaving the
reader (or a “code-user”) with the impression of “robust™
and trouble-free calculations.

The mathematical formulation is presented in Section
two, and the viscosity models of interest are discussed in
Section three. Section four details the numerical
procedure; in Section five, we discuss code validation.
Concluding remarks are presented in Section six. An
appendix is provided in which the elements of certain
matrices are defined.

2. Mathematical formulation

2.1 Governing equations

This paper focuses on the filling stage of the injection
molding of thermoset polymers in three-dimensional thin
parts. The Eulerian approach to the calculation of both
T and « is presented, for which the governing equations
are

V-SVp=0 (1)
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Above, S is the fluidity, which is inversely propor-
tional to melt viscosity, p is the pressure, p is the melt
density, C,, is the specific heat at constant pressure, T is
temperature, and ¢t is time. We also have k, which is the
thermal conductivity of the melt; Q,, is heat generation
from the exothermic cure reaction, # is viscosity, j is
strain rate, (X, y, z) are the spatial coordinates, and (u, v)
are the velocity components in the local (x, y) directions.
o is the degree of cure, defined as the ratio of the heat
already released at time ¢ under isothermal conditions,
to the total heat that is “releasable” if the reaction is
allowed to continue indefinitely, under the same
conditions.

Two models for do/dt have been used in our work. The
first (Model 1) has been suggested by Garcia et al.'! and
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is given by
de A E a yrCr 4
— =—1—X _—— —
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The second model (Model 2) is more common and
has been shown to work very well. It is due to Kamal
and Sourour!® and has the form:

dx_ (K, + Kya™)1 — )™ ©)
dt

where
K; = K{(T) = a; exp(—E,/T),i=1,2 (6)

In these models, 4, C,,, E, R;;,m, K, K;, a,, a5, E,,
E,, my, and m, are model constants. Model 1 can be
expressed in terms of Model 2 as shown in Table 1. Also
shown in Table I are the input values used in the present
work to validate the proposed solution method and the
equivalence between the heat of reaction in the two
models.

2.2 Velocities and fluidity
The fluidity S is defined as

1 b3¢2
= ———d
J‘O n(xa ¥, ¢)

for planar parts or,

T 1 R4¢3
s=2| =% 4
2Ln@%@¢

for pipes/ducts. (For noncircular pipes/ducts R rep-
resents the equivalent radius, which is determined to
give the same linear velocity as a circular pipe of radius
R)) The velocities are

6 1 p2
ue, 3, @) = ,, n(x y¢ )
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Above, ¢ is the vertical distance normalized by local
(half gap) thickness, b. Consistent with the procedure
used to obtain equation (1), we can define depth-averaged
velocities:

For the thin geometries considered the strain rate can be
written as

ou\? ov\2 2 0
_[(on av o
? [(a) +(az)] -

for planar parts, whereas for ducts we approximate j by
du

axial | >0

or =

(Ui 1s the velocity component in the axial direction of
pipe.) Finally, conduction in the lateral plane (shown
with underbrace in equation (2)) is very small for most
applications and could be neglected in the equations.
Also, neglecting them is consistent with the Hele-Shaw
approach used to obtain the flow equation. (An adiabatic
condition must be specified at surfaces where the
conduction terms are neglected.) However, we retain
both capabilities (Dirichlet and adiabatic), because our
procedure can be applied to regular, nonthin parts, as
we show later in the discussion of code validation.

§= -

2.3 Boundary conditions

The boundary conditions for pressure are: At sidewalls
and inserts we use dp/dn = 0, at free surface p = 0, and
at cavity inlet we specify either p = p(t) or Q = Q(z),
where Q =2 §c — SVp-ndC. For temperature, we have
T.(x,v,z;t) at the top wall, 6T/én =0 at midplane,
T = T,,j. at cavity inlet, and T = T,;,, or 6T/on =0 at
the side walls. The boundary conditions for the degree
of cure are da /on = 0 at the top, do/on = 0 at midplane,
X = O, At cavity inlet, and da/On = 0 at the side walls.
The temperature and the degree of cure at the free surface
are found by a fountain flow model that corresponds to
the “simplified front” in Garcia et al.'! with the
understanding that a more accurate model is required
for fast filling. A schematic of the various boundary
conditions for pressure and temperature is shown in
Figure 1.

3. Viscosity models

The applications require proper viscosity characteriza-
tion for the melt, which usually implies dependence on
strain rate, temperature, cure rate, and sometimes,
pressure. Some materials/processes do not require more
than the power law type models, whereas the
“relaxational” feature of models such as the modified

0= — 6_p § 5= — @ § Cross are needed in many cases. Three viscosity models
ox b’ ay b are used in our work, the first of which was introduced
Table 1. Equivalence of parameters for cure models 1 and 2
Parameter Model 1 Model 2 Input value Unit
1 — my 0.0 —
2 m ms 20 —
3 ACZ’" a, 2.545 x 107 1/sec
4 E/Rgas E, 6.399 x 10° K
5 — az 0.0 1/sec
6 — E 0.0 K
Heat of reaction CoAH, Qn 2.3208 x 10°? ergs/cm3
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Motd temperature or
heat flux on the surface

T = Twat

Specified side walt
temperature or heat fiux

Flowrate or pressure
(time-dependent)

Figure 1. Schematic of the various boundary conditions for
pressure and temperature.

by Castro and Macosko!® and has the form:

A E agel a+ba
ex —
T= %S PIR T | ayy—a

Here, A,, E,, R,, o, a, and b are the parameters of
the model. The second viscosity that we have
incorporated into our code is based on the modified
Cross model:

TP [ ]
1+ Gy(ne)" ! Oger — &

The (additional) parameters #,, G,, and n appear in this

model. Finally, we have used a model from Garcia:'°®

A [ 1 ][ agel :|a+ba
= €X
=P e aT - T) g — o

C, d, and T, are model parameters; T, is the glass
transition temperature, for which the form quoted in
Shen® has been used.

4. Numerical procedure

4.1 The “lay-flat”’ transformation

Equations (1)-(3) are in terms of some global cartesian
coordinates. However, to solve these equations for a
complex (thin) part with arbitrary orientations in space,
each element is transformed so that the part as a whole
is “laid-flat,” to reconcile coordinates (variables, fluxes,
etc.) between adjacent elements. Thus, the equations are
solved with x and y as the local in-plane (element)
coordinates, with z in the direction of the local thickness.

4.2 Discretization

The pressures are solved using the depth-averaged
Poisson equation (Hele-Shaw) procedure in Hieber and
Shen,® in conjunction with the control volume filling
approach in Wang et al.’> We use linear, three-node
triangular elements for pressure (and linear, six-node
prism elements for T and a). The corresponding elements
for pipes are linear, two-node, one-dimensional elements
and linear, four-node axisymmetric elements, respec-
tively. More details of the pressure solution procedure,
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as well as the moving front simulation, are available in
the cited literature.

The procedure for calculating T or a, which we now
describe, is one of the original contributions of the
present work. We will discuss the T equation, with the
understanding that the procedures are also completely
applicable to the equation for a. To obtain nonlinear
stability of the calculations we introduce the so-called
streamline upwind Petrov—Galerkin method (see Hughes
and Brooks!”). The modified energy equation becomes

oT 1
pc,,[—— +uVT —- hy, +

ot 27 |uf
(0450
\% vT o "
-Vl u-vT —
rC,
Ja
=VkVT + @+ 0, )

where @ is viscous dissipation, =72, h, is a
characteristic length in the flow direction, and v, is a
parameter of order one, depending on local Péclet
number, Pe,
ol k.
K pC,

Standard finite-element procedures are not appropri-
ate for the present applications because of the thinness
of the cavity compared to the lateral dimensions. We
present a finite-element line method as well as a couple
of variations of the approach. To this end, we introduce
an interpolation (within an element) of the form:

i i N¥(x, yM2(z)T*? @

K=1 Q=1

T(x, y,2) =

where J =2 for ducts and 3 for triangular pressure
elements, and N and M are vectors of basis functions in
the (x, y) plane and z-direction, respectively. For N, we
have used the standard linear basis functions for a
three-node triangle, whereas for M, linear, one-
dimensional basis functions of the Lagrangian type are
used. A similar weighting function (that is, N(x, y)M*(z))
is used. (Of course, N and M are identical for
circular/duct parts.) The ordinary differential equation
from the Galerkin procedure is integrated using either
the backward Euler or the trapezoid rule. The algebraic
equation from this can be written as

[MED + At0,GLEN(TLY) + At0,GRER(TLHY)
(Tl+ 1)]ATI+1,LP
— At(l _ 93)1: ko + At0 F'H(T'“)
+ [ME) — A1 — 0,)GLE*
— At(l — 92)G2 LP]TI,LP
~ [M&5 + A0, GLER(TEHY) _
+ At0,GEg (T Yy T 1L 9
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so that
T£n++lI,LP - T:: 1,LP + AT}: 1,LP (10)

where m denotes iteration level within a time step and [
denotes the time step. N5 represents the New-
ton-Raphson correction to the regular coefficient matrix,
which is zero if a scheme that is explicit in the convective
terms is used. At' is the time step size for step L. The 0s
are the usual parameters for weighting the contribution
of previous (explicit) and current (implicit) values of the
terms, to give, among other schemes, the backward Euler
and the trapezoid rule.

The matrices and vectors appearing in equation (9) are
given in the Appendix.

4.3 Semi-implicit line method

A completely explicit solution approach to equation
(9) is bound to be very expensive because of stability
restriction associated with small grid size in the
transverse direction. We have actually experimented with
the explicit procedure but encountered either unphysical
solutions or lack of convergence. A fully implicit
approach is not a good alternative either as this demands
too much memory and operation counts. We use an
implicit scheme in the transverse direction, in the manner
outlined below. To this end, we observe that equation
(9) can be written as

SAT =1 (11)
where
T{.+l.m+l — T€+l,m + AT5+1,m (12)

In the semi-implicit procedure, T in the equation
above refers to the array of temperatures for vertical
nodes “stacked” on a pressure node. That is, we loop
through pressure nodes (in the order in which the
associated control volumes are filled) and solve for the
temperatures at the vertical nodes stacked on a given
pressure node (Figure 2). The procedure to assemble
equation (11) is as follows:

1. Convert the (6 x 6) matrix problem for each
three-dimensional temperature element to a (2 x 2)
matrix problem for a one-dimensional element on a
side of the three-dimensional elements. The coefficient
matrices for the two problems are denoted by K §, and

K%, respectively.

FEM mesh for p e 1
—
FEM mesh for temperature
and relative cure

Figure 2. “Stacking” of temperature elements on the pressure
elements, showing linear, one-dimensional and linear, two-
dimensional pressure elements; and linear, four-node, axisymmetric
and linear, six-node, prism elements for temperature.

2. Collect and assemble the (2 x 2) matrices from all
lateral (three-dimensional) elements and at all layers
in a stack.

3. Solve the assembled system of equations implicitly
with the tridiagonal matrix algorithm (TDMA).

The conversion of the (6 x 6) three-dimensional
matrix problem to the (2 x 2) one-dimensional problem
could be done in such a way that, at a vertical layer, the
remaining (four lateral temperature) nodes of a
three-dimensional element could be treated explicitly or
implicitly,’ in the manner shown below. The advantage
of this, of course, is that schemes of different stability
characteristics can be produced, which could be used as
demanded by the processing conditions.

4.4 Explicit contribution of neighboring nodes

When the neighboring nodes contribute explicitly to
the (2 x 2) matrix problem, we use their values at the
previous time level, and the one-dimensional problem for
the vertical nodes becomes:

KIAT,=F}=Ff— ¥ K&AT,
A=10
ij=1,2,...,n, (13)
Above, n, is the size of K §, which is six, and n, is the
size of K3, which is two. 1o =n, + 1.

4.5 Implicit contribution of neighboring nodes

In this case we use the current values of the solution
at the neighboring nodes. Because these are not known,
a condensation procedure is implied.'® In this method,
a matrix system such as KT = F is partitioned as

[[Klll [K12]][{Tx}] _ [{Fl}]
[K21] [K22] [ {T}] L{F:}
where [K11], [K12], [K21], and [K22] are themselves

matrices, and {77} and {73} are vectors. To condense
out the degrees of freedom associated with {75} we have

[[K11] — [K12][XI[K21TK T}
= {Fx} - [K12][X]{F2}

where

[X]=[K22]"!

Interpreted for the current problem, the coefficient
matrix for the one-dimensional problem is

n—m n —n

xi=kg- {2 |"S KH]K} (1)
m=1 k=1

where H is an inverse matrix associated with the

variables that have to be “condensed” out of K°. For the

b By implicit contribution of neighboring nodes we imply a solution
procedure, for a node with n neighbors, that gives the same accuracy
as a direct method that solves, simultaneously, for the n + 1 unknowns.
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right-hand side of the matrix equation we have

ot 5[ st 0

m=1

Analogous procedures are used for the circular parts
of the domain. Finally, the reader will observe that the
foregoing schemes are reminiscent of the successive line
overrelaxation (SLOR) and the alternating direction
implicit (ADI) methods in finite difference. Our
semi-implicit approach differs from existing procedures
in the following ways:

1. We use a finite-element interpolation in all three
coordinate directions, as opposed to the hybrid
approach in previous schemes. Thus, in our
procedure, cell contributions to the assembled system
of equations are handled in a straightforward manner,
without any ad hoc treatments. Existing procedures
such as those in Wang et al.’ are very tedious, and
approximations are involved that require that cell
contributions be weighted on the basis of, say, cell
volume. Moreover, unlike previous methods, ours has
the advantage of ease of boundary condition
specification at the “top” and “bottom” of the mold,
while arbitrary grid spacing along z poses no special
considerations.

2. We use the streamline upwind Petrov—Galerkin
method to control nonlinear instability. The theory
and effectiveness of this approach are well devel-
oped.17-1%-2° Upwind methods in existing procedures
require, among other things, that one determine
(explicitly) if a pressure node is upwind or downwind
of an element (at each time step); and these have not
been analyzed.

3. As we show later in this paper, our procedure allows
the use of one of three variations of the schemes, with
potentially different accuracy and stability character-
istics.

the tensor product of the basis functions in the
in-plane (x,y) coordinate directions and that for
variation along z. However, we need to verify the
appropriateness of equation (8) for our type of
problem. The heat conduction problem seems
appropriate for this purpose.

5. Code validation

The filling (flow, pressure) part of the present code has
been validated in Ladeinde et al., so that the focus in
the present work is on the transport equation for T or
a. The present code is routinely being applied to realistic
industrial systems with arbitrary complex (but thin-
walled) geometries, including microchip encapsulation.
However, as discussed earlier, we need to show that
equation (8) gives accurate interpolation. We also need
to establish the accuracy of the complete code, by
comparisons with published computational and experi-
mental work. (We are not aware of an exact, closed-form
solution for injection molding equations, even in a trivial
geometry.) For the purpose of validation, we will discuss
heat conduction in nonthin parts, and the numerical
results in Garcia et al.!! on curing in a thin-walled
rectangular part. We will then present results for a
simulation involving a complicated geometry, using the
encapsulation of a microchip.

5.1 Three-dimensional conduction test

What is really being tested with this conduction
problem is not mold filling, but the interpolation in
equation (8). The equation solved is

o*T 62T o’T
ax? + 6 922
The solid is (x, y, 2)€(0, a) x (0, b) x (0, ¢) with bound-

=VT=g=0 (16)

4. The interpolation in equation (8) is not the standard ary conditions T(0, y, z) = Ty, Tla, y, z2) = T,, and T(x, 0,
one for finite elements, as equation (8) is composed of 2) = T(x, b, z) = T(x, y, 0) = T(x, y, ¢) = 0. We have used
a=b=c=1and T, =10, T, = 5.
The series solution for this problem is
16 i i l:{T0 sinh l(a — x) + T, sinh Ix}{sin [(2p + D)ny/b1}{sin [2q + l)nz/c]}] a7
7 2o 40 (2p + 1)(2q + 1)sinhla
where
_@p+1)7n* g+ 1w 5.2 The Garcia test problem
I= B2 + p; (18)

The series solution and the numerical solution from
the present work are compared in Table 2 for an interior
region. Note that the treatment in the code of
singularities at the corners and their exclusion in the
series solution make the numerical solutions appear to
be more accurate than the series solution for the mesh
used (10 x 10 x 10 grid points, with ¢, = p,, = 50). For
this reason, it is more appropriate to compare results at
interior points.
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We have solved the thermoset problem of Garcia et
al.'! which, in turn, corresponds to the conditions of
experiments 6, 7, and 8 for RIM 2200 described by Castro
and Macosko.'® Cure Model 1 was used, with the
viscosity model of Castro and Macosko. After conversion
to the CGS, which is the preferred unit in our code, the
following conditions were imposed:

Co = 1.840 x 107ergs/(g K), p=1g/cm3, k=17 x

10*ergs/sec cm K), 4, = 1.03 x 107° g/(cm sec), E,/R
— 4967 K, 0,y = 065, a= 15, b= 10, Q, = 2.3208
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Tz'zble 2 Comparison of numerical calculation using our code
with series solution for three-dimensional heat conduction

x y z Present Series solution
0.0 05 0.5 10.0 9.87
01 0.5 05 7.76 7.69
0.2 0.5 0.5 5.77 5.67
03 0.5 05 4.20 412
04 05 05 312 3.08
05 05 05 2.52 2.50
0.6 05 05 2.36 2.34
0.7 05 05 2.59 2.56
08 05 0.5 3.16 312
0.9 0.5 0.5 4.00 3.98
1.0 0.5 0.5 5.00 4.94

x 10° ergs/cm3, a; = 2.545 x 107/sec, E, = 6.399 x
10°K, a, =0, E, =0, m, =0, my =2, T, = 338K,
Tjee = 333 K.

Part dimension is (41.6cm x 100cm  x 0.32cm.
Isothermal wall is used at the top. Linear injection
rate is U, = 18.6 cm/sec.

The results presented here were obtained with a mesh
consisting of (81 x 21) nodes in the (x,y) plane and
(81 x 11) in the vertical (x, z) plane, but grid refinement
studies have been carried out to establish grid
independence, other than the dependence due the moving
front (see next section).

We experimented with three variations of the
vertically implicit (VI) scheme. In the first case, we use
implicit contribution of neighboring nodes (VIIN, for
vertically implicit, implicit neighbors), where only one
interation per time step is used. In the second approach,
we also used implicit neighbors, but allow multiple
iterations in a time step (VIMI, vertically implicit,
multiple iterations). The third case involves explicit
neighbors (VIEN, vertically implicit, explicit neighbors).
Because of the multiple iterations, VIMI is expected to
be more stable than VIIN; and VIIN more stable than
VIEN because of the implicit treatment of neighboring
nodes. VIMI and, to a lesser extent, VIIN could be
reserved for unusually difficult problems, for example,
those involving “unfavorable” filling rate in a “specified”
mesh (see below). The cost of VIMI compared to VIIN
is a multiple of the number of iterations needed to obtain
a convergence of the temperature or cure solution. For
small problems (12 x 20 x 7 = 1680 temperature nodes)
the CPU times for VIIN and VIEN are in the ratio 5:6.
However, for larger problems (81 x 21 x 11 = 18,711
nodes), the relative CPU time ratio is 11:10. The explicit
approach in VIEN has the tendency to increase the
number of pressure iterations, and hence, to require more
CPU time. However, as the problem size becomes larger
the cost of condensation in VIIN becomes larger than
that for extra pressure iterations in VIEN. In terms of
accuracy, it seems, from our investigations, that more
tests on a variety of processing conditions are needed for
a more definite conclusion.

The results obtained from our calculations using
VIEN agree very well with those reported by Garcia et
al. In fact, we reproduced the pressure curve given by

figure 6 in their paper, and the cure level (their table 2)
b'elow and above the envelope of maximum residence
time are in close agreement. Some of these results are
shown in Figures 3~7 for temperature and the degree of
cure at two times during filling. The results of our
calculations are consistent with the physical interpreta-
tions given in Shen,® in terms of the existence (absence)
of boundary layer in the temperature (cure) distribution,
the location of maximum cure, etc.

In Figure 8, we demonstrate the ability of the present
approach to handle quite complicated geometries. The
sample problem for this case is the encapsulation of a
Motorola computer chip, the plan view of which is
shown in Figure 8. The material is an epoxy thermoset,
with the following properties:

C, = 1.2059 x 107ergs/(gK), p=182g/em’ k=
6.6992 x 10%ergs/(sec cm K), a,,, = 0.17, a = 3.496,
b=28503, Q, =1.092 x 10%rgs/cm?3, a, = 8475 x
107/sec, E, = 7.216 x 103K, a, = 9.716 x 10%/sec, E,
— 8585 x 10K, m, = 0.7241, m,=1234, T, =
448 K, T,j.. = 393 K.

Z 1x20 cm)

i n 1 —
]

Figure 3. Cure level for the Garcia test problem at t = 1.11. The
actual values are gssth of the values shown on the contours. Picture
is for the vertical plane (x, z). Note that for Figures 3-6 and 9 the
dimensions of the partin the (x, y) directions are 41.6cm x 0.32cm;
the z (thickness) direction has been magnified relative to x. -

Figure 4. Cure level for the Garcia test problem at t=2.2. The
actual values are 1ghsth of the values shown on the contours. Picture
is for the vertical plane (x, z).
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Figure 5. Temperature distribution for the Garcia test problem at
t=1.11. Contour levels range from 333 to 354. Picture is for the
vertical plane (x, z).
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Figure 6. Temperature distribution for the Garcia test problem at
t=2.2. Contour levels range from 333 to 400. Picture is for the
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Figure 7. Depth-averaged cure distribution for the (x, y) plane at
t=2.2. The actual values are 1gsth of the values shown on the
contours. The depth-averaged temperature shows a similar distribu-
tion, with a range of 333 to 372. Note that the dimensions of the
part in the (x, y) directions are 41.6 cm x 10.0 cm; the y direction
has been magnified relative to x.
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The modified Cross cure model is used with G, and 7,
defined as "~ ! and B exp(T,/T), respectively. Additional
parameters are

B = 4.16 poise, T, = 2091K, n = 0.28, and
7 = 26310 dynes/cm?.

The injection region is shown with an arrow in Figure
8(b). The thickness of the part varies from 0.14 to
0.867 cm, depending on location in the lateral plane.
Injection rate is such that the part fills in 6 sec. The
computational mesh is shown in Figure 8(a); it consists
of 2326 pressure nodes, 4080 pressure elements,
2326 x 11 = 25,586 temperature (cure) nodes, and
4080 x 10 = 40,800 temperature (cure) elements. The
filling simulation is almost exact (5.97 sec vs. the exact
value of 6.0sec). A contour map of depth-averaged
temperature is provided in Figure 8(b). Based on
measurements from physical experiments at Motorola
the computed results are considered to be encouraging.
Further work on this problem involves the characteriza-
tion of the type of boundary conditions that should be
used in the code.

Finally, for the Garcia problem, we show, in Figure 9,
the calculations at ¢t = 2.08 sec using VIIN and VIML
The results, which are similar for the two approaches,
are not as accurate as those obtained with VIEN. In fact,
the results with VIIN and VIMI resemble those that we
have observed for thermoplastics. This is even more so
if we observe in these contour maps that the cure level
is much lower for VIIN and VIMI compared with VIEN.
As of now we cannot explain these differences
satisfactorily, but they seem to be related to accumulated
truncation errors, as VIMI and VIIN involve many more
operations. (A single-precision arithmetic was used for
these calculations.) Investigation is continuing, as VIMI
and VIIN are of interest from the standpoint of stability.

6. Concluding remarks

We wish to discuss some of our observations that we
believe might be helpful to others. The first concerns the
relative sensitivity of the filling pattern (and hence the
pressure solution) to the grid. Element aspect ratio and
grid refinement have significant effects on the control
volume approach to simulate filling. The departure of
“pressure elements” from equilateral (square, for
rectangular elements) causes filling error. In a run in
which we (naively) used a grid of 21 x 21 x 7 points for
the Garcia test we observed a filling time of over 10 sec,
and of about 4sec with a 41 x 41 x 7 grid. (The
expected fill time is 2.29 sec.) These grids produce very
“thin” pressure elements, if it is recalled that part
dimenston in (x, y) is (41.6 cm x 10.0.cm). The possible
reasons for the poor performance with aspect ratio of
about two or greater can be found in the following
features of the filling algorithm. The algorithm does not
allow the filling, within a time step, of more than one of
those control volumes that are located on the particle
path of the flowing melt. This is independent of the flow
rate, volume of control volume, and time step size At.
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Figure 8. Encapsulation of a Motorola computer chip with thermoset plastics. The computational grip is shown in (a), and a

contour map of depth-averaged temperature is shown in (b).
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Figure 9. Performance of VIMI and VIIN for the Garcia prablem,
showing cure in the (x, y) plane at t = 2.08. The actual values are
12ooth of the values shown on the contours. More details are given
in the text.
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Further, we do not known the specific location of fluid
within a control volume, only the fractional fill is known.
With this method, a control volume is considered filled
when the volume of fluid inside it becomes approx-
imately equal to the volume of the control volume.
Finally, because At for the current time step is chosen
based on the previous time step, there is no way of
ensuring that a control volume will just fill at the end of
the current time step. From the foregoing, we expect that
geometry and changes in flow direction will play an
important role in filling simulation, including the effect
of At, as described in the next paragraph. The Garcia
results were obtained with a mesh of (81 x 21) nodes in
the (x, y) plane, with seven or 11 nodes in the z-direction.
This grid is sufficiently fine, with an element aspect
ratio of one. The filling time agrees with the expected
value.

Another observation is that time step size selection is
crucial for accurate calculations, using the control
volume approach. It might be necessary in many cases
to allow the code to select time step At (which requires
that at least a control volume be filled per time step),
although the mesh must be sufficiently fine to do this.
For a coarse mesh a user input time step size might be
more appropriate. The speed of signal propagation
(injection rate) must be used to estimate At;, ., not unlike
the Courant number limitation in high-speed flows. This
At will be estimated from Ax > At x Uy where Ax is a
“typical” mesh size and U, is signal speed. Of course,
we are now immediately reminded of difficulties that
could arise from unnecessary refinement—smaller At
means more expensive (unnecessary) calculations, with
the attendant accumulation of the error associated with
filling. As an illustration of some of the foregoing, using
81 x 21 x 7, we experimented with (a) At;,,,, = 0.01, (b)

At = 0.0267 and, for case (c), we allowed the code to
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select At. We also experimented with a fourth case, (d),
using 2 mesh of 121 x 31 x 7, allowing the code to
calculate At. Both of these grids have an aspect ratio of
1.All tests used isothermal, Newtonian viscosity (which
is quite appropriate for filling time but not for pressure
values). The total number of time steps required for
filling, the fill time, and the CPU time for the four cases
(including the time for profiling, which could account for
up to half of the total) are, respectively, (359, 1.79, 635),
(230, 2.52, 478), (230, 2.49, 479), and (349, 2.53, 1675)
units. Note that a At of 0.0267 corresponds to that
selected from Ug(=18.6) and Ax(= 41.6/80 =~ 0.5).
The use of Ax in this manner once more reminds us of
the need for a uniform mesh in (x, y). In conclusion, we
want the code to select At and make use of the injection
rate and mesh dimensions if At must be defined from
input. Also, “unguided” mesh refinement may be very
undesirable!

The final observation that we wish to share pertains
to the “numerical degeneracy” that could result from
some otherwise “physical” material models. Prior to the
convergence of an iterative scheme, the quality of the
solution is sometimes not very good, and is not required
to be, except the At is “small” for the scheme. The
intermediate solutions sometimes violate the physics of
the problem and, as an example, could lead to a situation
where o > a,, which causes overflow in the viscosity
models. To remedy this problem, At must be small
(depending on the scheme) so as to nullify the need for
iteration or, if iteration must be done, one could impose
bounds on some critical variables during the iterations.
Of course, the converged results must be physically
correct.
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APPENDIX

In this appendix the matrices and vectors appearing in the equation are defined as follows:

M5 =pC, J- NE(x, y)[f MO(z)M*(2) dz]NL(x, y)dx dy
Q z

Gxg® =pC, f N¥(x, y)l:J‘ MO(z)M*(z) dz]{
Q z

K|
GiéP=J ON (x’ y) [j MQ(Z)MP(Z) dz] N;( y)
Q z

0x; X

1h K
4 Lhsvs 2N x5 .
2 |u} Jo Ox

The forces are

ONX(x, y)

(?N L
(x, y)} dx dy

o0x dy

dx dy + L NX(x, y)U azxg j(z) k9 ~

N (x Y )}[ J M2()MP(2) dz]{ - s N ;(x’ y )} dx dy
X y

M*(z)

]NL(x, y) dx dy

ON*(x, y)

_lhyv, ONX ) 0 d
Fgo= Ch |“‘; Q_('i(%y)[jz MQ(Z){((D + a—:Qm)} dz:l dxdy + 'L N¥(x, y)l:J; MQ(Z){(D + d—:Qm}dZ:l dxdy

+ I N¥(x, Y)[ f M Q(Z)k{a—T (@nf2) + o (Z)ﬂy(z)} dz:l dAq
s R 0x ay

T z=b
+ f N¥(x, y)[M 22k T (e, Yo, y)]
2 aZ z=0

The velocities iz and © that appear in these equations
are the arithmetic averages of the nodal values for an
element, whereas 1,, 7,, and 1. are components of the
surface normals. We assumed, in the foregoing, that there
is no convective flux of heat out of the boundary in the
(x, ) plane, other than at the gate where the condition

dx dy

of specified temperature is used. However, we allow
specified temperature or heat flux at the lateral wall, and
at the bottom or top wall. d4, in the above expression
for Fg, stands for an elemental portion of the boundary
curve in the (x, y) plane.
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